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INTRODUCTION

There are very few aspects of igneous petrology which are not in

some way closely related to the viscosity of magma. Rate of crystal growth,

gravitative settling or rise of solids and bubbles, mode of volcanic

eruption, flow differentiation mechanisms, flow characteristics of lavas,

mass transfer in magmas under externally imposed pressure gradients or

natural convection, rate of cooling of magmatic intrusions and lavas;

all of these phenomena are critically dependent upon the viscosity of

magmatic liquid or the effective viscosity of a magmatic suspension.

Quantitative evaluation of any of the above igneous processes must begin

with a knowledge of the viscosity of silicate liquids within the rather

wide range of temperature and composition displayed by natural mê ts. The

need for such viscosity data has long been recognized by petrologists, and

many attempts have been made to determine effective viscosities from field

observations of lava flow rates (Becker, 1897; Palmer, 1927; Nichols, 1939;

Krauskopf, 1948; Hinakami, 1951; Walker, 1967, among others). Uncertainties

related to temperature measurements; size, shape, and roughness of the

flow channel; and gas and solid particle content make evaluation of such

viscosity determinations very difficult.
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Laboratory viscosity measurements on geologically significant

liquids date back to the turn of the century. The first determinations

were probably made by Doelter (1902), who was able to classify on a

qualitative scale the viscosities of various rocks and minerals melted

in the laboratory. Much of the early work is summarized by Kittl (1913).

The measurements of Kani (1934a, 1934b, 1935), Kozu and Kani (1935), Kani

and Hosakawa (1936), Volarovich (1936), and Volarovich and Tolstoi (1936)

were valuable contributions towards an understanding of the temperature

and composition dependence of silicate viscosity. Bowen (1934) measured

the viscosities of molten orthoclase and albite, and included an

interesting discussion of the significance of viscosity in petrology and

liquid silicate experimental work. More recently, viscosity measurements

on molten rocks have been reported by Euler and Winkler (1957), Shaw (1969),

Carron (1969), and Murase and McBirney (1970).

Newton's law of viscosity states that the shear stress in liquids

undergoing laminar flow is proportional to the local velocity gradient

perpendicular to the stress. The proportionality constant in this relation

is known as the viscosity coefficient, n. In Newtonian fluids it is

independent of the magnitude of the shear stress. The silicate liquids

discussed in this paper closely approximate the Newtonian model. Fluid

suspensions of solids or bubbles are best described by non-Newtonian

models. For a discussion of this problem in geological context the

reader is referred to Shaw et al. (1968) and Shaw (1969).
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The viscosities of silicate liquids are strongly dependent upon

chemical composition. . For example, at 1300 C where most igneous rocks are

completely melted, the composition range "basaltic" to "granitic"

2 8corresponds to a viscosity range of 10 to 10 poises. Such extreme

variability emphasizes the need for systematizing the composition dependence

of viscosity. Without such an approach, much of igneous petrology remains

largely qualitative. In discussing the differentiation of the Stillwater

magma, Hess (1960) found it necessary to know the viscosity of the magmatic

liquid. Taking what he considered to be reasonable estimates of the upper

4 2(3 x 10 poises) and lower (3 x 10 poises) viscosity limits of basalts,

Hess was forced to adopt the geometric mean (3 x 10 poises) as the best

value for the Stillwater magmas. This same value was adopted as the

viscosity of the Skaergaard magmas, by Wager and Brown (1967). Jaeger

(1968) states that: "In all discussions of convection a knowledge of

the viscosity of the liquid is vital, and no certain information is avail-

able about this." In subsequent calculations, Jaeger (op. cit.) is forced

to adopt Hess* figure as typical for magmas.

In petrology it has been difficult to make direct and quantitative

use of viscosity data partly because the measurements have been performed

on individual molten rocks without a systematic investigation of composition

dependence. Fortunately a large number of measurements have been made

in simpler, two to five component systems, which make it possible to

systematically analyze the composition dependence of viscosity in anhydrous

silicate liquids. It is the main purpose of this paper to present the
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results of such an analysis in the form of a simple model designed to

allow reasonably accurate calculations of viscosity as a function of

temperature and composition.

In this paper we treat directly the problem of predicting viscosities

of anhydrous silicate liquids. Such viscosity numbers are applicable to

many extrusive melts and to nearly dry magmatic liquids in general (e.g.,

lunar liquids). The fluidizing action of H^O dissolved in silicate

melts is well recognized (Saucier, 1952; Sabatier, 1956; Friedman, et al.,

1963; Burnham, 1963; Carron, 1964 and 1969; Shaw, 1965), and it is now

possible to predict the effect of l^O content on viscosity in a semi-

quantitative way. Data for hydrous melts are not yet sufficient, however,

to warrant direct integration with the more complete set of data on the

effect of other melt constituents. We have chosen, therefore, not to

incorporate H_0 directly in our model. Rather, it seems to us that the

best procedure is to use the present model for calculating viscosities

of anhydrous compositions, and, where necessary, to estimate the effect

of added H-O according to the suggestions of Shaw (1965), and Carron (1969).

The model presented here can easily be modified to incorporate the effect

of H?0 whenever sufficient additional data are accumulated.

INPUT DATA

Selecting an unbiased set of viscosity input data presents certain

problems which cannot always be resolved in a purely objective fashion.

Fortunately the influence of the selection procedure is minimized when
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the total data population is large as is the case for viscosity measure-

ments of silicate liquids. We have used a total of 2,440 observations

which span the temperature range 1100-1800 C and the composition range

35-91 mole % SiO-. In Table 1 we list the silicate systems, approximate

temperature ranges, and references for the input data selected.

In general, all the measurements selected for this study are reported

to be accurate to within 10% or better, and there is no reason to doubt the

validity of this error limit for the viscosities per se. For purposes

of attempting a correlation between viscosity, temperature and composition,

the reliability is probably not as good as this figure suggests. Accurate

control and measurement of high temperatures are difficult. The same

is true of composition. Bubble formation, volatilization, contamina-

tion of sample by ambient atmosphere and crucible are potential sources of

error in reporting accurate viscosity-composition data. Since viscosity

is strongly dependent on temperature and composition we estimate the

overall uncertainty in the input data to be substantially greater than

10%. The simplest way to gauge the reliability of the data is to directly

compare the results of various investigators wherever this is possible.

This comparison is made in Table 2 and shows that the agreement is good,

but well outside the 10% limit in many cases. Nevertheless, the data of

Table 2, and the selected input data in general, constitute the most

accurate viscosity measurements available, and the scatter is certainly

wolt within the limits that would be deemed potrologically useful.
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A few published viscosity data are not Included in Table 1. As a

general guide, we have assumed that modern data is more likely to be

accurate. In order to avoid a biased set of data, we have followed the

practice of either totally accepting or rejecting the data reported in

a single investigation rather than selecting only those measurements

which closely fitted our model. The data of Saito and Saeki (1965) for

the system SiÔ -CaO-Ĉ O-j-FeO-TiO, were not included because they are

in serious disagreement with the results of Bockris and Lowe (1954) and

Kozakevitch (1960) at comparable compositions. We have not included

the measurements of Kato and Minowa (1969) in the system Si02-Al20,-CaO

(with additions of MgO, FeO, MnO, TiO-, V-0-, Cr_03, and P20-) because of

insufficient evidence for the control of composition. The data of Saito

and Kawai (1951) on Si02-Al203-MgO-CaO, Behrendt and Kootz (1949) on

Si02-Al203-MgO-CaO and Si02-MgO-CaO-Ti02, Shil (1961) and Schleier (1958)

on SiO^-Al-Oo-MgO-CaO were obtained using graphite crucibles at temperatures

in excess of 1500 C. Silicate melts are known to attack graphite

seriously at elevated temperatures and consequently these data have not

been incorporated. The results of Gimmel'farb (1968) in the system SiO_-

Al»0»-CaO-FeO were also not selected because of possible contamination

problems.

The 2,440 observations which have been selected as input data are a

compromise between our evaluation of reliability and a desire to incorporate

maximum information on the effect of petrologically significant components.

From this point of view the weaknesses of the input are: (1) the effect
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of K-0. is known only from the binary KJD-SiO- system, (2) there are few

reliable data on the effect of FeJD,,. Additional measurements on the above

and on liquids containing Ti09. FeO, and MnO would be very desirable.

CHEMICAL DEPENDENCE OF VISCOSITY

General

The dependence of silicate liquid viscosity on bulk chemistry may be

explained qualitatively in terms of the classic concepts of silicate

structure. Liquid Si02 is considered to be a non-periodic array of SiO,

tetrahedra linked together by strong Si-0 covalent bonding at all corners.

In such an idealized system, flow must involve the rupture of some of the

Si-0 bonds. Consequently, the activation energy and viscosity for pure

Si02 flow are predictably high (Hofmaier, 1968). The addition of

metallic oxides to the Si02 liquid results in a breakdown of the continuous

Si~0-Si linkage due to the ionic nature of the metallic atoms. Some of

the Si-0 bonds are replaced by weaker M-0 bonds, and the Si-0 bonds adjacent

to cations are weakened because the latter polarize the shared oxygen.

The process may be schematically represented by:

i t i i
0 . 0 0 0
I * i »

- 0 - S i - 0 - S i - 0 - + MO-* - 0 - S i - O - M - O - S l - O -
i i I I
0 0 0 0
i i i i

At the orthosilicate composition, (MO + M20)/Si02 = 2, the tetrahedral

linkages are supposedly gone, i.e., there are no silicon bridging oxygens
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and the structure consists of independent SiO, tetrahedra. The progressive

weakening of the bonding of the SiO, network by addition of M_0 and MO

components has given rise to their description as network modifiers, and

it follows that the addition of such network modifiers causes a decrease

of viscosity. Other oxide components such as Fe20- and Ti02 are also

3+ 4-4-treated as network modifiers since the ionic radii of Fe and Tl preclude

any extensive participation of these cations in the network forming

tetrahedra. The dual role of Al-0, is discussed in another section.

Model for Correlation

Regardless of structural details, it is clear from the above

generalizations that viscosity-composition variations will be most strongly

dependent on the concentration of network forming atoms such as silicon.

It also follows that the effect of various network modifiers may be quite

specific. Figures 1, 2, and 3 show the variation of the logarithm of

viscosity with composition in binary systems of the type MgO-SiO-, M

MA10 -SiO_, and MAl.O.-SiO-. In addition to the obvious increase of

viscosity with mole fraction of Si02> several features of the plots are

noteworthy. It is apparent that the effect of the various network

modifiers is quite specific, and that a satisfactory quantitative model

of viscosity-composition variation must be more discriminating than the

usual "network former" and "network modifier" categories. The data for

individual systems can be represented by a small number of straight line

segments, i.e., the logarithm of viscosity may be satisfactorily expressed
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as a linear function of composition over restricted composition intervals.

We may generalize this relationship in analytical form:

In n • E X1D± (1)

where X. is the mole fraction of the ith component, and D. is a constant

associated with component i over a restricted range of composition. Each

temperature has a particular set of D. constants. Our model is essentially

based on an extension of these observations to multicomponent systems.

The composition ranges have been arbitrarily selected at 35-45, 45-55,

55-65, 65-75, and 75-81 mole % SiO-, and the D. constants are determined

by minimizing the sum

S « E (In n . - I X.D.)2 (2). measured . i i

where j indexes all measurements within a composition range at a given

temperature. The set of D. constants which minimize S are determined by

iteration, starting with initial D. values that are obtained from linear

least squares analyses of the two component systems of Table !• The method

of Marquard (1963), combining the Gauss method and the method of steepest

descent, was used to obtain improved D. values for each subsequent iteration,

Choice of Components

Aluminum plays a dual role in silicate liquid structures. The
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addition of Al 0- to Si02 liquid rapidly lowers viscosity (Kozakevitch,

1960 and Rossin et al., 1964). In such melts most of the aluminum is

evidently not isomorphous with silicon; it is predominantly in six-fold

coordination with oxygen and acts as a network modifier. The addition

of other monovalent or divalent cation oxides, however, allows aluminum to

enter the tetrahedral structural sites in place of silicon while preserving

local charge balance, and we postulate the existence of MA102 and MAl^O,

groupings as schematically represented by:

i i i i i
0 0 0 0 M t 0

-0-si-O-Si-O- + MA10. - -0-Si-O-Al-O-Si-O-
1 i i | t !
0 0 0 0 0
I I < ! I

Fig. 4 shows that as Al 0^ is substituted for Na_0 or CaO (keeping the

mole % of SiO. constant) there is a steep increase of viscosity until a

maximum value is reached in the vicinity of compositions equimolar in

AljO, and Na^O or CaO. This increase corresponds to the progressive

incorporation of aluminum in tetrahedral positions until all the associated

cations are used up. The tetrahedral framework is thereby strengthened

and the average size of the flow units is increased until the equimolar

composition is reached. Any additional aluminum is octahedrally coordinated

and does not cause a further increase in viscosity. Similar observations

have been made on the viscosity relations in the system MgO-Al~0,-SiO»

(Riebling, 1964). The structural role of aluminum Inferred from the viscosity
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data is in agreement with determinations of the coordination number of

aluminum in soda aluminosilicate glasses by Day and Rindone (1962) using

an X-ray fluorescence technique. These authors found that the wavelength

of aluminum Ka radiation at compositions Al/Na < 1 corresponds to aluminum in

tetrahedral coordination whereas Al/Na > 1 compositions showed peak shifts

corresponding to aluminum in sixfold coordination. Thermodynamic analysis

of melts in the Si02-KA102 and Si02-NaA102 systems by F^rland (1964) also

indicates the existence of KA102 and NaAlO- species.

Most melts of geological interest have compositions such that the

sum of the MO and M20 oxides exceeds A1J3- on a molar basis, and we

therefore assume that in such melts aluminum will be predominantly in _

tetrahedral coordination. In accord with this observation and the preceding

arguments we have chosen to express the chemical composition of magmatic

silicate melts in terms of the following major oxide components: KAHK,

NaA102, CaAl204, MgAl^, Si02> Ti02> FeO, MgO, CaO, Na20, and K20. In

addition, Mn05 SrO, BaO, Li20, BaAlJD,, and MnAl20, may also be minor

components. In calculating the mole fraction of the various components,

AlJD., is first combined with K20 to form KA10_. Any excess potassium is

assigned to K_0. More usually an excess of Al?0~ is further combined with

NajD, BaO, SrO, CaO, MgO, and MnO in that order until all Al-O- is used

up. The sequence in which the aluminate components are calculated

corresponds to the order of stability suggested by viscosity measurements.

For example, Kani (1935) observed that molten KAlSi,Oa is more viscous

than molten NaAlSi«0R. We interpret this to mean that K is favored over



12.

Na when competing for positions associated with tetrahedrally coordinated

aluminum. Comparison of viscosities between the systems Na20-Al20,-Si02

and CaO-Al20,-SiO_ are also informative in this regard. For this purpose,

the melts to be compared must have equal molar concentrations of SiO_

and Al-0- and A120, > CaO or Na20'. In such melts, differences of viscosity

(at equal temperatures) correspond to differences in the relative stabilities

of NaA102 and CaAl?0, groups, and the data indicate greater stability for

the former. In binary M0-Si02 liquids, the replacement of CaO by MgO

increases viscosity (e.g., Fig. 2). However, in MO-Al-O.-SiO,, systems

where molar Al_0, > MO, the replacement of CaO by MgO decreases the viscosity

(e.g., Fig. 3), indicating that calcium aluminate groups are more stable

than magnesium aluminate groups. These and similar arguments lead us to

calculate the mole fractions of the aluminate components in the order:

KA10 , NaA102, BaAl^, SrAl̂ , CaAl̂ , and MgAl^. Few data are

presently available on the viscosity of silicate liquids containing MnO.

Fortunately, the concentration of MnO in natural liquids is usually low,

and calculation of MnAl_0, is arbitrarily performed last in the sequence.

Previous correlation models

The degree to which silica tetrahedra are directly bonded to each

other exerts an important influence on viscosity. In pure silica liquids

(0/Si = 2) all oxygens are involved in Si-O-Si "bridges". At the ortho-

silicate composition (0/Si = 4) there are only independent SiO, tetrahedra,

i.e., no bridging oxygens. The variation of the 0/Si ratio in silicate
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liquids is a measure of the degree to which the Si02 tetrahedra are linked

together. This line of reasoning led Murase (1962) to propose that the

bridge density (b.d. = 4 - 0/Si) of silicate melts be used to estimate the

composition dependence of vlscdsity. In Fig. 5-c we have plotted the

logarithm of viscosity as a function of bridge density for 123 representative

measurements selected from the input data of Table 1. The correlation is

very poor primarily because the model neglects the effect of alumlwun.

As previously pointed out, the role of aluminum in most natural liquid

compositions will be that of tetrahedral network former.

More realistic models based on the ratio of oxygen to tetrahedrally

coordinated cations (including aluminum) have been proposed by Shaw (1965)

and Carron (1969). Figures 5a and 5b show an improved viscosity correlation

for these parameters although the scatter may still be several orders of

magnitude larger than the stated errors of the measurements. This scatter

is mainly due to the non-specific roles assigned to the individual network

forming and network modifying atoms in such general models. The quality

and quantity of viscosity data now available (Table 1) makes it worthwhile

to attempt a more quantitative correlation with composition. Where only

limited data are available, as with the effects of lUO, the generalized

composition parameters are useful for semi-quantitative estimates of

viscosity as shown by Shaw (1965), and Carron (1969).
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RESULTS

Constants

An initial set of D constants (equation 1) was determined at 50 C

intervals between 1200 and 1800 C by a least squares fit to the input

data (equation 2). The initial Dj,.- values were then plotted against

reciprocal absolute temperature, and the departures from linearity assumed

to be mainly due to insufficient data in certain composition ranges.

The best straight lines were then drawn by visual inspection, and the

resultant smoothed values of !>„._ were used to determine new values of
2

D constants for the remaining components by minimizing the sum:

S * <ln Observed ' XSiO DSi0 " *
 Xi°i > (3>

The final D constants are given in Table 3 along with the number (N) of

input data at each temperature and composition range. We also list the

mean observed viscosity value and the root mean square of the difference

between calculated and observed viscosity for each set. There is generally

a smooth variation of the calculated D, constants against reciprocal

temperature. In most cases the variation is approximately linear with

respect to reciprocal absolute temperature over an appreciable range,

and linearly extrapolated or interpolated values are denoted by italics

in Table 3. In all cases the actual values calculated by the final

least square analysis (equation 3) have been retained without further

smoothing .
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Figure 6 is a frequency diagram of Aln n - In n (calculated) -

In n (measured) for 2,440 measurements. The average difference is zero,

and the frequency distribution is quite symmetrical. Of the total number

of comparisons made, 77% lie between -0.25 < Aln n < 0.25, and 99% lie

between -0.75 < Aln n < 0.75.

Viscosity Calculations

The entries of Table 3 are sufficient in many cases for direct

calculations of viscosity according to equation 1. In other cases lack

of sufficient input data makes it necessary to estimate D values for

certain components. This paper is primarily concerned with geological

applications, and we have chosen several compositions representative of

the magmatic range in order to discuss the calculations and the necessary

approximations. The compositions of the representative magma types are

given in weight percent in Table 4 along with the calculated mole

percentages of the components necessary for the viscosity calculations.

The results of the calculations are illustrated in Fig. 7.

Unfortunately, very few data are available on the viscosity of silicate

liquids containing Fe?0_. The few measurements which have been made are

all in the low Fe-O, range with poor control of oxidation state, and it

is impossible to obtain accurate figures on the effect of this component.

To a first approximation the available data suggests that equimolar amounts

3+ 2+
of Fe and Fe have roughly the same influence on the viscosity of
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silicate melts (Endell and Zauleck, 1950; Johannsen and Brunion, 1959; and

Rtintgen et al. , 1960) . In addition to the lack of experimental data on

the influence of Fe^O-, it must also be realized *.tv*t tUo actual. Fe 0

content of magmas is usually not known to any degree of certainty. Anav-j.,,̂

of solidified rocks often reflect post liquid-state oxidation due to

3+
cooling and/or exposure to oxidizing atmospheres. Accordingly, all Fe

2+is converted to Fe for the calculations. The small amount of phosphorus

usually present in magmas is added to silicon (cf . calculations in Table 4) .

For present purposes it is convenient to consider ae major components

all those present in concentrations greater than 5 mole %. For all major

components it is recommended that only the D. values actually listed in

Table 3 be used. This will mean that for certain compositions, the

calculations will be possible only over certain restricted temperature

ranges (e.g., see compositions 2-6 of figure 7). In most cases the

temperature range will be sufficient for petro logical applications, and

the linear reciprocal temperature dependence may be extrapolated to some

extent provided the system in question remains above the liquidus . The only

possible major component of rock systems for which there are no data in

Table 3 is KA102. The measurements of Kani (1935) on molten alkali

feldspar systems indicate that D,,A,n should be somewhat larger thanJxAXC/^

D-. ., . When sufficient viscosity data become available for potassic

aluminosilicate systems the D .,.,_ constants can be quantitatively
KAXUn

evaluated. In the meanwhile, we have been forced to use
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for purposes of calculation. Fortunately KA10. is not a major component

of most magma types (only composition number 1 of Table 4).

There is not always available a complete set of constants for the

minor (< 5%) components, and the following recommended approximations

have been used in the sample calculations. Where values of D j are

not available, we have used the approximation, D_._ = Dr ... This isJ.I.UM v»au

consistent with the experimental results of Johannsen and Brunion (1959)

on the effect of these two components. No data are available for D

in the composition range 0.35 * X ._ < 0.45. Fortunately most rock
Oi(Jn

systems in this range also tend to have only relatively minor amounts of

alkali metals (cf. analyses 5 and 6 of Table 4). In these cases we have

used the DNaA-iO constants for the composition range 0.45 < X _ < 0.55.

Wherever D. constants are lacking for certain minor MO components, we have

used the arithmetic average of the DM_ values listed in Table 3. All

the above approximations should be valid to within ± 2 (natural logarithm

units) or better, and the error associated with each minor component

estimate will therefore be less than ± 0.10. The average error of several

such estimates is often less.

Figure 7 illustrates the range of viscosities calculated for typical

natural silicate liquids. Over 95% of the 65 calculated points fall within

±0.20 (In n) of a straight line plot, and we believe that linearly

smoothed reciprocal temperature plots are the most valid representations

of the calculated viscosities. Our model is based on a quasi-linear

variation of the logarithm of viscosity with composition over somewhat
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arbitrarily defined composition ranges. This necessarily imposes an

artificial discontinuity on the calculated viscosities when the composition

is varied from one range to the next. Analysis number 2 (X04A = 0.659,
b J.C/M

Table 4 and Fig. 7) falls close to the arbitrary division between two

composition ranges. In order to illustrate this effect we have calculated

the viscosity using D. constants for the range 0.65 < X < 0.75 (curve 2a)

and 0.55 < Xc._ •? 0.65 (curve 2b).
blU_

Viscosity of molten rock and mineral systems

The proposed model is primarily intended for calculating melt

viscosities in chemically complex geological systems. The most direct test

of the model is a comparison of calculated and measured viscosities in

such systems. Unfortunately there is not an abundance of viscosity data

for geological systems, and we have decided to make comparisons with all

the measurements known to us rather than attempting to select only superior

experimental data. In Table 5 we have compiled most of the published

viscosity measurements for molten rock systems, and have compared them

to calculated viscosities. In each case the calculated viscosity is

obtained from a linear fit (against reciprocal absolute temperature) of

individual points calculated at 50° C intervals using the data of Table 3.

The compositions of the melts are listed in Table 6. The total range of

viscosities covered and the correspondence between measured and calculated

values is given in Fig. 8. The general agreement shown in Table 5 and

Fig. 8 indicates that the model may certainly be used with confidence for

the purpose of obtaining viscosity values for geological calculations.
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Considering the experimental data by sets according to author(s)

we detect no systematic trends in the differences between measured and

calculated viscosities except with the data of Euler and Winkler (1957).

The calculated values for this set of compositions tend to be somewhat

higher than the measured viscosities. For the 55 data points of these

authors given in Table 5, the average deviation, I(In n - In n )/55, is

equal to 0.51. For the remaining 54 data points listed in Table 5, the

average deviation is very close to zero (-0.06).

We may also compare the measured and calculated viscosities of

Table 5 and Fig. 8 for individual rock compositions. The only serious

discrepancies occur with an olivine basalt and olivine dolerite (analyses

20 and 21, Euler and Winkler, 1957)s a nepheline basalt (analysis 4, Kani,

1934), and an andesite (analysis 8, Volarovich, 1936). There is strong

evidence that for the first three of these molten rock systems, the

measurements are not self-consistent. In Fig. 9 we have plotted the

logarithm of the measured and calculated viscosities against reciprocal

absolute temperature, and have shown the activation energy for viscous

flow that is indicated from the slope in each case. The measurements of

Kani (1934) on the nepheline basalt (Fig. 9a) imply an activation energy

of only 15 kcal/mole, well below the range of observed values for all

comparable silicate liquids. The measurements of Euler and Winkler (1957)

on molten basalt and dolerite (Fig. 9b and c) indicate activation

energies which are very much too large since the activation energy for

pure Si02 liquid is 120 kcal/mole (Rossin et al., 1964). The calculated



20.

viscosities in all three cases indicate activation energies which are

consistent with values normally observed for comparable systems.

It is impossible at this stage to attempt any further quantitative

evaluation of the accuracy of the viscosity calculations. The differences

between measured and calculated values may be due to a large number of

factors. First of all, the model itself is only a convenient approximation.

Our fit to the data on the simple synthetic systems is by no means perfect,

and in some instances the D. constants are based on relatively few

measurements. The measurements themselves are subject to all the errors

previously discussed in reference to the reliability of the input data.

The problem of accurate composition is perhaps more acute in rock systems.

Many of the measurements were performed on molten rocks which were analyzed

in separate splits without special precautions taken to insure homogeneity.

Most of the rocks contained some H~0 before melting. Alkali metals are

subject to volatilization during heating in the presence of H?0. Crucibles

of graphite, alumina and platinum have been used in the experiments. All

three materials are known to react with silicate liquids under certain

conditions. The undetected presence of crystals in the melt may also

seriously affect measured viscosities. The effective viscosity of a

liquid-solid suspension may be estimated from the equation due to Roscoe

(1952)

ne = n(l - 1.35 <t>)~
2'5 (4)
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where n is the effective viscosity of a suspension made up of a liquid

of viscosity n and $ volume fraction of solid particles (ideally uniform

spheres). The equation leads to an estimate of n /n = 1«2 when <{> = 0.05.

The presence of bubbles usually affects viscosity measurements in a

similar way. The gas pressure inside the bubble and the surface tension

at the gas-liquid interface oppose the deformation caused by shear strain

and increase the effective viscosity. An increase of viscosity due to

the presence of bubbles is well known from the study of foams made from

relatively low viscosity materials. It is perhaps less widely appreciated

that bubbles can also effectively lower viscosity if the energy necessary

to deform a bubble in a liquid is less than the energy required to induce

viscous flow in the bubble-free liquid phase. This phenomenon may be

anticipated in highly viscous liquids, and was observed by Murase (1962)

who recorded decreasing viscosity of a glassy specimen of the Oshitna 1950

lava at 1000 C during vesiculation.

A general evaluation of the over-all accuracy of the existing viscosity-

temperature-composition data for geologic systems could be obtained by

comparing the results of separate laboratory measurements on identical

compositions. Unfortunately., we are not aware of any published duplicate

measurements in rock systems which would allow such intercomparisons.

However, several independent measurements in feldspar composition

liquids have been published. A comparison of these is made in Table 7

where it can be seen that the scatter of measured values is comparable to

the differences between calculated and measured viscosities for rock

systems noted in Table 5 and Fig. 8.
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DISCUSSION

In order to arrive at a valid calculation model it has been

necessary to examine a wide spectrum of the literature covering measure-

ment and theory of viscosity in silicate systems. Such a comprehensive

review, combined with extensive statistical treatment of much of the

presently accumulated data inevitably results in a broad overview of many

interesting aspects of the problem of viscous flow in silicate liquids.

We present in this section a brief discussion of a few points which we

believe to be of interest.

Compositional Dependence of Viscosity

The linearity of the composition dependence of logarithmic viscosity

in silicate melts over even restricted composition ranges may appear

somewhat surprising, but it is interesting to note that similar relations

have long been known in ionic solutions. Jones and Dole (1929) found that

the viscosity of such solutions is given by

n = n (1 + Av^C + BC) (5)o

where n is the viscosity of the solvent, C is the molar concentration of

solute, and A and B are constants for a particular solute. The A»/C~ term

is always positive and accounts for the expected increase in viscosity due

to the electrostatic attraction between oppositely charged nearest neighbor

ions (Falkenhagen and Dole, 1929; Onsager and Fuoss, 1932). It is much
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smaller than the BC contribution at all but very dilute concentrations.

Values of B coefficients are characteristic for individual ions and can

be either positive or negative. Negative viscosity coefficients in

aqueous solutions have been explained in terms of the "depolymerization"

of water by certain ions (Cox and Wolfenden, 1934). The analogy with

network modifying components which have low or negative D. coefficients

in our model is obvious.

In reviewing viscosity data for moderately dilute aqueous electrolyte

solutions, Gurney (1953) concluded that the contributions of individual ions

to the BC term were approximately additive and independent, i.e.,

n » no (1 + EB̂ ) (6)

where i indexes the individual solute ions. We note that since B.C « 1

for all solutions studied, equation 6 can be rewritten as

In n » In no + ZBiCi (7)

In our model we have proposed that the composition dependence of viscosity

for silicate liquids is given by equation 1, which can be rewritten in the

form

Dsio2
 + J (DJ - Dsio2

)xj
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where j indexes all components other than Si02. If we regard SiO. as the

"solvent" of silicate melts, there is a direct analogy in the composition

dependence of viscosity between the two types of liquids.

Temperature Dependence of_ Viscosity

Almost all of the viscosity measurements we have examined were

found to obey closely an Arrhenius type equation, n " Aexp(E/RT). This

holds true for measured viscosities in molten rock systems as well as

measurements in synthetic silicate systems of fewer components. The fit

to an Arrhenius equation is good enough in many cases to allow the authors

to report the measurements exclusively in terms of the Arrhenius parameter*.

A and E. Out of all the data that were selected for the input set, only

those of Liutikov and Tsylev (1963) and Staronka and Choma (1968) could not

be fitted to an Arrhenius equation with 10% maximum deviation. The

reasons for these exceptions to the rule are not known to us.

Because the input data closely obeys the Arrhenius expression, it

is reasonable to expect a linear dependence against reciprocal temperature

for the deduced D. constants. As described in a previous section, this

was found to be approximately the case for the initial set of Dg.̂  constants,

and the final set of D . constants were constrained to this type ofJ>iu~

temperature dependence. It is interesting to note then that most of the

remaining D. constants also show a 1/T linear dependence. This is not

true for all components, and soiae of the D vs. 1/T linear plots exhibit

kinks. It is not possible to state with certainty whether these
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irregularities are fundamental or simply due to the sparse data available

for certain components. In any case, constraining the Dc.n coefficients
OlU —

to a linear 1/T dependence does not appreciably influence the agreement

between calculated and measured viscosity (root mean square difference

between calculated and measured natural logarithm of viscosity for the

entire input data set increased only from 0.239 to 0.246 when DqiO was

thus constrained). It should also be pointed out that calculated viscosities

for all silicate systems which we have considered so far indicate Arrhenius

E values which are consistent with the range of values to be expected from

estimates based on composition. Calculated viscosities do not show any

of the irregularities which are occasionally displayed by the coefficients

for the individual components, and some restricted temperature extrapolation

via reciprocal temperature plots is probably permissible. These should not

extend appreciably below the stable liquidus temperature for any system

since there is evidence (see belox?) that E in the Arrhenius equation

becomes temperature sensitive in the metastable liquid range.

Many theories dealing with the liquid state have been proposed to

explain the temperature dependence of transport properties such as diffusion,

conductivity and viscosity. Some of these theories result in modified

forms of the simple Arrhenius equation. For example, reaction rate theory

(Glasstone et al., 1941) applied to viscous flow in liquids predicts

a relation of the form

n'- K /I exp(E/RT) (9)
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In this equation and in equations 10 and 11, K denotes a constant that is

temperature independent. From our analysis of the data for silicate

liquids we conclude that there is no difference in goodness of fit between

equation 9 and the simpler Arrhenius relation. The existing data are

not sufficiently precise to act as a basis for either retaining or

rejecting the /F term in the pre-exponential.

When glass-forming liquids are cooled metastably below their

equilibrium liquidus temperatures no discontinuity is observed in their

second-order thermodynamic properties such as heat capacity or thermal

expansion coefficient. This temperature range represents a true region of

stability (really metastability with respect to ordered crystalline phases)

for the supercooled liquid. Further cooling to a temperature which is

characteristic for each particular liquid system causes a sharp decrease

in heat capacity and thermal expansion. Such measurements serve to

operationally define the supercooled liquid-glass transition in glass-

forming systems. It is recognized that the glass transition defined in

this way is a rate controlled phenomenon since with reduced cooling rates

it is possible to lower the temperature at which discontinuities are

observed in thermal expansion and heat capacity. In practice then, the

glass transition point, T , is somewhat arbitrarily determined by the
O

coincidence of molecular relaxation times in the supercooled liquid system

and ''normal" cooling rates as judged by human standards (for most glass-

forming systems this usually corresponds to a measured viscosity coefficient

13of approximately 10 poises at T ). Based to a large extent on the type
o
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of behavior outlined above which is typical of classical glass-forming

systems such as the silicates, the glass transition has often been

discussed in purely kinetic terms, and glasses regarded strictly as

supercooled liquids which because of their great structural complexity

are only very slowly approaching the true equilibrium liquid structural

state. This view maintains that only the barrier of time separates

glasses from equilibrium supercooled liquids.

It is becoming increasingly clear that a purely kinetic concept of

the glassy state cannot be strictly correct. Kauzmann (1948) showed that

the equilibrium properties of the true supercooled liquid (i.e., above T )
8

when extrapolated to temperatures below T quickly lead to impossible
O

thermodynamic results such as negative configurational entropy. This

result led Kauzmann to believe that "a non-vitreous stable [really

metastable] liquid cannot exist below a certain temperature". Gibbs and

DlMarzio (1958) have subsequently shown that this paradox can be resolved

by assuming that all supercooled liquids, given sufficient time, will

undergo a true thermodynamic second-order transition to a glass. The

temperature of this thermodynamic glass transition, T (as opposed to the

operationally defined kinetic glass transition) corresponds to Kauzmann's

"certain temperature" and is always somewhat below T . It is, in fact,
. O

the lower limit of T as would be determined by measurements of heat
g

capacity or thermal expansion in experiments of ever-increasing duration.

This theory of glasses differs fundamentally from previous ones in that the

glassy state is considered a true thermodynamic equilibrium (albeit metas-

table) state.
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Recent developments of the ideal glass concept (Gibbs and DIMarzio,

1958; Adam and Gibbs, 1965; Angell, 1968a and 1968b, among others) lead to

some interesting conclusions regarding the temperature dependence of

viscosity in liquids. The entropy of a liquid may be considered in terms

of thermal and configurational contributions. The latter vanishes to zero

at T according to the theory of the ideal glass transition. Since viscous

flow can take place only via configurational changes, it follows that the

ideal supercooled liquid has infinite viscosity at T . Consequently, T

can be considered as the temperature at which the ideal liquid reaches

a configurational ground state, and this characteristic temperature should

be the effective temperature "zero point" in equations describing the

temperature dependence of viscosity. In keeping with this generalization,

the theoretical treatment of Adam and Gibbs (1965) predicts a temperature

dependence of the form

\}Kexpl ------- } (10)

As pointed out by Angell (1968a) , when T is not far above T this is

approximately equivalent to the Vogel-Tammann-Fulcher empirical equation

(Fulcher, 1925) which successfully describes the temperature dependence

of viscosity in many liquids.

(11)
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We have attempted to fit the input data to both equations 10 and 11, but

despite the fact that they have an additional parameter over the Arrhenius

equation, they did not provide a better fit to the measurements. This

may be related to the fact that our set of measurements are valid for

''high temperature liquids" (i.e., above the stable liquidus) whereas

equations 10 and 11 have been most successful in describing the properties

of liquid systems at lower temperatures (see Angell, 1968a for discussion

of this point). The above considerations serve to emphasize our caution

about extrapolation of calculated viscosities much below the liquidus.

This should not prove to be a major obstacle in using the calculations for

petrologic purposes since the existence of greatly supercooled liquids

in nature is presumably rare.

CONCLUDING REMARKS

We have presented this model for viscosity in the hope that, in

spite of its obvious shortcomings, it will allow a more quantitative

treatment of many geologic problems involving viscosity. The approach has

already proved useful in explaining certain aspects of lunar petrology which

can be related to the viscosity of lunar lavas (Weill e£ al., 1970 and 1971).

Another obvious application is that now it is possible to calculate the

progressive changes in viscosity of a multicomponent magmatic or synthetic

liquid during crystallization. Space does not permit us to do more in

this paper than simply present the model in detail. We leave it to others
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to develop additional applications and also to further test its validity

as additional data are gathered.

The variation of a physical property such as viscosity in temperature-

multicomponent space is clearly only a special case of a more general

petrologic problem involving other physical and chemical properties of

magmatic liquids. It is encouraging to find that even with the compositional

complexities of natural systems taken into account, some of these problems

lend themselves to relatively simple approximate analytical solutions (cf.,

density of magmatic liquids in Bottinga and Weill, 1970, and plagiocalse

crystallization in Kudo and Weill, 1970). It is a pleasure to think that

perhaps additional aspects of igneous petrology will prove capable of

being systematized in like fashion.
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Table 1. Silicate systems, approximate temperature ranges and
references for viscosity input data.

System

Li20-Si02

CaO-Si0

MgO-Si0

FeO-Si0

SrO-Si0

BaO-Si0

Na20-CaO-Si02

Na20-BaO-Si02

Na20-FeO-Si02

CaO-MgO-Si02

CaO-FeO-Si02

FeO-MnO-Si02

FeO~MnO-Ti02-Si02

Al203-CaO-Si02

Al203-MgO-Si02

Al203-BaO-Si02

Al203-CaO-MgO-Si02

Al203-CaO-Bao-Si02

Al203-CaO-Ti02-Si02

Al203-CaO-FeO-Si02

Al203-CaO-MgO-BaO-Si02

Al203-CaO-FeO-MnO-Si02

Al203-CaO-MgO-FeO-Si02

Al203-CaO-FeO-MnO-Ti02-Si02

1 range £c )

1100-1700

1100-1750

1100-1600

1400-1800

1600-1800

1200-1450

1550-1800

1500-1800

1100-1150

1100-1400

1100-1400

1100-1150

1300-1500

1300-1450

1300-1650

1200-1350

1300-1500

1250-1500

1100-1750

1150-1800

1250-1800

1500-1800

1550-1800

1250-1650

1400-1500

1250-1450

1200-1450

1300=1650

1400

1250-1500

1400

Reference no .

1,2

1,2,3

1,2

4,11,12.14.15,18,19

1,15

5,6,16,17

1,15.

1,15

7

7

7

7

9

9

14,18,19

8

16,17

16,17

9,10

11,13,14,15,16,17,18,19,
24,

14,15,19,20,21,24

15

15

14,16,17,18,19,22,23,24

16,17

24

24

14,22

16,17

25

16,17



Table 1. Continued

REFERENCES:

1. Bockrise^al. (1955)
2. Shartsis e£ al. (1952)
3. Heidtkamp and Endell (1936)
4. Bockris and Lowe (1954)
5. R&ntgen et al. (1956)
6. Urbain (1951)
7. Mackenzie (1957)
8. ROntgenetal. (1960)
9. Helbrugge and Endell (1941)
10. Riebling (1966)
11. Rossin et_ al. (1964)
12. Kozakevitch (1960)
13. Machin and Yee (1948)
14. Staronka and Choma (1968)
15. Hofmaier (1968)
16. Kozakevitch (1949)
17. Kozakevitch (1954)
18. Machin ejtal. (1952)
19. Machin and Yee (1954)
20. Riebling (1964)
21. Liutikov and Tsylev (1963)
22. Hofmann et al. (1959)
23. Machin and Hanna (1945)
24. Johannsen and Brunion (1959)
25. Bills (1963)



Table 2. Intercomparisons of viscosity input data.

Composition (mole %)

Si02

69.7
70.0

67.4
67.0

80.5
80.5
80.4
80.0

70.5
70.0
69.9

67.1
67.6

83.3
83.1

67.0
66.6

39.2
39.0
39.0

Si02

50.0
50.0

69.5
69.5

48.3
48.3

58.4
58.3

Li20 Na20 K20 FeO

30.3
30.0

32.6
33.0

19.5
19.5
19.6
20.0

29.5
30.0
30.1

32.9
33.0

16.7
16.9

33.0
33.4

60.8
61.0
61.0

MgO CaO SrO BaO

50.0
50.0

30.5
30.5

51.7
51.7

41.6
41.7

Viscosity

1200°

131
115

83.0
81.3

940
911
1030

270
200
204

150
135

2447
2240

355
390

5.75

1600°

3.16
3.82

-

1.81
1.8

4.63
4.7

1300°

54.9
55.0

39.8
38.9

385
351
410
224

112
87.1
81.8

64.1
60.3

861
832

125
145

1.6
1.5
1.1

1700°

1.79
2.26

13.6
18.1

1.11
1.1

2.75
2.7

(poises)

1400° (C)

25.6
28.2

20.0
20.0

179
151
182
100

55
41.7
50.0

30.3
28.2

343
355

50.2
60.3

1.0
1.0

1800°

1.18
1.41

8.5
10.0

0.75
0.8

1.8
1.8

Reference no.
(see Table 1)

2 (interpolated)
1

2 (interpolated)
1

2 (interpolated)
2 (interpolated)
3
1

3
1
2 (interpolated)

2 (interpolated)
1

2 (interpolated)
1

2 (interpolated)
1

5
6
16

1
15

4
15

4
12

15
12



Table 2. (CONTINUED)

49.7
50.0

50.2
50.0

Composition

Si02

62.7
62.7

53.2
53.3
53.2

56.6
56.6

59.1
59.1

A1203

9.2
9.2

12.6
12.4
12.6

8.3
8.3

11.6
11.6

CaO

28.0
28.0

34.2
34.3
34.2

50
50

(mole

.3

.0

49.8
50.0

i)
MgO

35
35

29
29

.1

.1

.3

.3

55.0
55.2

40.8
40.7

24.5
23.9

38.9
39.1

20
20

20
20

.5

.9

.3

.2

52.0
50.0

23.5
25.0

24
25

.5

.0

39.5
39.5

43.6
43.6

5.8
5.8

5.7
5.7

47.5
47.5

36.3
36.3

7
7

14
14

.3

.3

.4

.4

3.18
3.08

2.80
2.76

1.95
1.87

1.86
1.68

Viscosity

1300°

720
730

247
250

-

1350°

27.7
29.3

10.4

1600°

19.5
12.5

1400°

6.77
5.8

10.2
8.8

1400°

180
214

70.9
80

118

269

1400°

18.2
15.4

4.11
5.3

1700°

9.71
6.16

1450°

4.60
3.1

6.9
6.3

1.30
1.20

1.50
1.07

(poises)

1450°

120
128

42.3
55
42.4

53
68.6

115
148

1450°

12.2
9.2

2.89
4.2

1800°

5.17
5.25

1500° _,

3.29
2.9

4.58
4.2

1
15

1
15

Reference no.
(see Table 1)

24
13

18
24
12

21
19

21
19

19
14

18
14

20
15

23
22

18
22

49.6
49.6

61.6
62.0

5.8
5.8

12.1
12.1

37.2
37.2

11.0
11.3

7.4
7.4

15.3
14.6

16.9
21.7

440
390

10.9
14.9

238
222

7.53
8.9

137
124

1 18

1 22
1

f 19
S 14
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Table A. Compositions of representative magma types used in sample
calculations. Numbers 1, 2, 3, 5 and 6 are granite, diorite,
diabase, peridotite and dunite average analyses respectively
(Clark, 1967, Table 1-1). Number 4 is an average nepheline
basalt (Hanson, 1967, Table VI, no. 14).

Weight %

Mole %

(1) (2) (3) (4) (5) (6)

Si00i

AlJL
Fe'O3

Fe33

MnO
MgO
CaO
Na20
K20

H^O
P2°5

(a)

(b)
(c)

70
0

14
1
1
0
0
1
3
4
0
0

.18

.39

.47

.57

.78

.12

.88

.99

.48

.11

.84

.19

56
0

16
3
4
0
4
6
3
2
1
0

.77

.84

.67

.16

.40

.13

.17

.74

.39

.12

.36

.25

50.48
1.45

15.34
3.84
7.78
0.20
5.79
8.94
3.07
0.97
1.89
0.25

46.
2.

15.
3.
7.
0.
7.

10.
3.
1.
1.
0.

0
6
6
5
9
16
4
1
4
7
1
53

43
0
4
2
6
0

36
3
0
0
1
0

.95

.10

.82

.20

.34

.19

.81

.57

.63

.21

.08

.10

40.49
0.02
0.86
2.84
5.54
0.16

46.32
0.70
0.10
0.04
2.88
0.05

KA102
NaAlO,
CaAl20,
MgAl'O*
CaO ̂  *
MgO
MnO
FeO
Ti02
SiO,

5.97
7.68
2.41
0.47
0
1.02
0.11
1.83
0.38
80.13

3.13
7.61
5.99
0
2.36
7.18
0.12
6.99
0.72
65.90

1.43
6.85
6.28
0
4.76
9.95
0.19
10.83
1.26
58.45

2.46
7.45
5.45
0
6.80
12.48
0.16
10.45
2.21
52.54

0.24
1.10
1.88
0
1.56
49.23
0.15
6.25
0.07
39.52

0.04
0.16
0.33
0
0.40
58.69
0.12
5.76
0.02
34.48

a. All Fe '' is added to Fe'

b. Calculations for anhydrous liquids only,

c, All P5* is added to Si4+.
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Ĵ1

ooe>j

in
so
•

m
ON
CO

00
ON

in

m
CO
*

sO

Oo
CO
rH

ON

O
so
aoin
o

CO
ON

00
m
•

SO
CM
rH

»̂ *oo
sr

r--
ON
•
m

o
0
sr
rH

ON

*O s~*
a vo
0} CO

o

§
a) c
CO Vi
cd -H
IH m

£ £

u
•H
>o
14
cd

«H
O
p>

o•uca
rH
O
H

m in m m
CM Ol CM O4

m in m m in

- » • » « * • * • • *oo oo oo oo ooin in «n in m
o o o o o

so in -* oo in
ST 01 rH

r H i n o s r

sO SOin vn
in min m

soin
in
m

SOminin
o o o o

CM r-so co co in
CM rH

co co r^ co

CN

O O sO SO
O co ON m
co r̂  co 01

O - * O O C M O O

so in so r>> O
m co rH ON oo

o o o o o
m o m o i n

i n c O ON

o o o oin o m oCM co co -*



5
3

•rl
4Jco
rj

in
0)
rH

OJ
H

0)
CJ

(1)

<u
(4-4
0)

c
O
•H
4J
-J•ff
CO
o
g.

0

cr
TJ

4-1
CO

rHa
u
CO
u

c

?
3
cos
s

H

sr
r-»

H

1

o
C /•*

vO
CO
•rl Q>
CO rH

rH Cfl
3 H
nj *"'

CM
o
•H
CO

co
cu
co
•H
O
a

c
c
r-l

CO
<u
co
•rl
O
0,

C
o

rH

^rH
1

O

^M^

Oo

vO v0
CO CO

r-l iH

•rH "̂
C 0
(4 Cfl

CO CO CO CO rH rH rH rH

CO C O C O C O rH rH rH rH
C3 fO CO co P** f*^ r^ f^^ Q \ o \ o \ o m i r i i o u ^
0 0 0 0 O O O O

\D CO <J\ rH O Is* 00 C>I
lA O^ IO ^^ Ov CO Q* f̂
in CN rH lO CO rH rH

Ol 00 t*̂  rH OO C>l C^ CO
C O v O O m C O O O C M O O

\ 4 3 m m < r \ o * o m < f

^3* ^o QO co in '̂ ^ ^^ co
i n C M r H r H s D C M r H r H

O so rH co ON o\ r̂ « CM
C O m C M O N v T v O r H O N

^ • ^ ^ - * v j j ^ i n ^
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Figure Captions

Figure 1. Composition dependence of viscosity in SiCL-M-O systems at

1400 °C . Data from Bockris et^ a^. (1955) , Q » O » I\ » Shartsis

et al. (1952), £ > 9 , A ; Heidtkamp and Endell (1936), |.

Figure 2. Composition dependence of viscosity in SiO.-MO systems at

1700 °C. Data from Bockris and Lowe (1954) , O 5 Bockris et al .

(1955), 1_J ,ZA ,V_); Hofmaier (1968),̂  , H, A t 4& ; Kozakevitch

(1960), Q.

Figure 3. Composition dependence of viscosity in MO'Al.Oj-SiOj and

M20 ̂1202-8102 systems at 1700 °C. Data from Rossin e£ al . (1964),

O 5 Hofmaier (1968) , W , G , "*" , /A ; Riebling (1964) , H ;

and Riebling (1966) , -^- .

Figure 4. Viscosity at constant mole % SiO? and temperature in the

SiO~-Al_0--CaO system at 1800 °C (Rossin et al. , 1964 and Kozakevitch,
4* ^ J "̂ ™̂  ~

1960) and the SiÔ Al̂ -Nâ  system at 1500 °C (Riebling, 1966). .

Figure 5. Variation of viscosity with composition parameters R., (Shaw,

1965), R2 (Carron, 1969), and bridge density (Murase, 1962) in

silicate liquids at 1500 °C. The 123 data points are typical of

the composition range (mole %) Si02 (40-90%), Al^O, (0-20%),

remainder MO + M»0, and were randomly selected from the input data

of Table 1. The symbols Q, Gr, Ga, Pe, and Os denote the

composition parameters of SiO-, average granite, gabbro, peridotite,

and orthosilicate respectively.



Figure 6. Frequency diagram of difference between calculated and experi-

mentally measured logarithm of viscosity. Measured values taken

from input data of Table 1. Calculated values from equation 1

using constants of Table 3.

Figure 7. Calculated viscosities for liquids of compositions listed in

Table 4. See text for explanation of curves 2a and 2b.

Figure 8. Correlation of calculated and experimentally measured

viscosities in molten rock systems. •• , Carron (1969); I I , Euler

and Winkler (1957); -f" » Kani. (1934) 5 (̂ J , Murase and McBirney (1970);

X» Shaw (1968)• A, Volarovich and Tolstoi (1936); A ,

Volarovich (1936).

Figure 9. Activation energy of viscous flow (kcal/mole). a. nepheline

basalt, analysis no. 4, Table 6 (Kani, 1934). b. olivlne basalt,

analysis no. 20, Table 6 (Euler and Winkler, 1957). c. olivine

dolerite, analysis no. 21, Table 6 (Euler and Winkler, 1957).

Plotted points are measured viscosities, dashed lines are calculated

viscosities.
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